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Abstract

Using a hedonic regression approach with data from 1.53 million Airbnb properties, I estimate

the price of a representative short-term rental property at the center of 734 cities worldwide. The

estimated rental prices provide an internationally standardized proxy for housing costs. Rental

prices computed in this way are found to be highest in Amsterdam, London, New York, and San

Francisco. I use these standardized rental price estimates to compute the elasticity of housing

costs with respect to city size. My preferred specification shows an elasticity of 0.16, statistically

significant at the 1% level. However, there is considerable geographic heterogeneity. Housing

costs increase more strongly in city size in the euro area and India than elsewhere. In contrast, I

find them to decrease in city size in Mexico. I offer suggestive evidence that crime might explain

this unusual result.

1 I thank Marius Brülhart for his guidance and countless hours of fruitful discussion. Moreover, I thank Dzhamilya
Nigmatulina for helpful comments and Gilles Duranton for his inspiration. Moreover, I thank Laura Camarero
Wislocka for her excellent help with assessing and defining city centers.

2 Departement of Economics, Faculty of Business and Economics (HEC Lausanne), University Of Lausanne, 1015
Lausanne, Switzerland; bernhard.noebauer@bluewin.ch.



1 Introduction

A lot of empirical work confirms that wages are increasing in city size (for a survey see, for example,

Combes and Gobillon, 2015). Bigger cities offer better opportunities to learn, share, and match,

forces that are commonly summarized under agglomeration economies (Duranton and Puga, 2004).

However, since our societies have not converged to live in a single gigantic city, there must be costs

that make big cities less efficient or pleasant and that at least partially counteract agglomeration

economies (Henderson, 1974). A particularly prominent example of such costs is housing costs,

which are the focus of this paper.

The elasticity of housing costs with respect to city size measures how much more expensive hous-

ing becomes when city size increases, and estimates of that elasticity are surprisingly scarce. A

prominent exception is Combes et al. (2018), who measure an elasticity of house prices with respect

to city size of 0.21 for a sample of 277 urban areas in France. Given the French context, their

estimates are mainly based on mid-sized cities, with an average urban area population of 166,020

and a median of 47,909 (p. 1565). However, we might expect urban costs to be disproportionally

higher in the largest cities. Combes et al. (2018) show evidence of that by estimating a non-linear

effect of city size, but these estimates are based on few observations at the upper end of the French

city size distribution. I supplement their evidence using a worldwide sample of 734 cities with an

average population of 2,100,936 and a median of 905,270 that has more to say about the housing

cost premium of large and very large cities and goes beyond the context of a developed country.

Methodologically, I follow Combes et al. (2018) in measuring housing costs at the city center. This

has the advantage that differences in transportation costs have a smaller influence on comparisons

across cities, or no influence at all if we take the monocentric city model at face value. This model

still guides a lot of research in urban economics and its assumptions are widely applied (for a survey

on the model and its application see Duranton and Puga, 2015). In contrast, comparing city average

real estate prices comes with the problem that the average property in a big city like Tokyo is further

away from the center than the average property in a smaller city like Kagoshima, which implies

higher transportation costs that confound the comparison.

For my analysis, I use data on short-term rental properties from Airbnb. Using these novel data

allows me to extend the analysis to the global scale, based on an extensive set of variables that

describe the properties in an internationally standardized way. This worldwide scope is hard to

achieve with traditional data from national statistical offices or real estate platforms. As Airbnb

hosts typically compete for the same housing units as long-term residents, across-city differences in

nightly rates serve as a proxy for differences in long-term housing costs. I show, for the examples

of France and the United States, that the city comparisons of housing costs estimated with Airbnb

properties correspond to those estimated with long-term rental objects, albeit not perfectly.

I choose the 734 cities in the sample, their geographic boundaries, and their center points using

transparent rules that I apply worldwide. Within these cities, I have data on 1.53 million properties
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that were active between January 2018 and March 2019 and available or rented for at least 100 out

of 365 days. I do this sample restriction to exclude apartments that only capitalize on peak price

periods, using the Men’s Fifa World Cup in June and July 2018 in Russia as a natural experiment

to determine the cutoff value.

Using a hedonic regression with city fixed effects and city-specific distance gradients, I create a

ranking of the 734 cities regarding the rental rate of a representative property at the city center.

That property can be rented in its entirety by a maximum of two guests, has one bedroom and one

bathroom, and shares the standard of an average Airbnb property in its city regarding all other

characteristics. Given my methodology and data, I estimate Amsterdam, London, New York, and

San Francisco to have the highest rental prices in the world. Caracas, Mandalay, Monteria, and

Srinagar are at the other end of the ranking, with rental prices that are around 20 times lower.

I run multiple robustness checks to confirm that the ranking is robust to changing underlying

assumptions.

In the second stage, I regress the estimated rental prices on city size. For most specifications, I follow

Combes et al. (2018) in using log population to measure city size and controlling for log area. This

setup can be read as an unrestricted version of population density. I include country fixed effects

when using the worldwide sample, so the coefficients are estimated from within-country variation.

Moreover, I control for various city characteristics, including for the number of Airbnb properties per

100,000 inhabitants to control for the attractiveness of a city to tourists. An instrumental variable

approach in which historical population sizes are used as an instrument serves as a robustness

check. In my preferred specification, I estimate an elasticity of 0.161. This coefficient implies that

a 10% higher population size is associated with housing costs that are 1.61% higher. The effect is

statistically significant at the 1% level.

The literature provides a small number of related results. Ahlfeldt and Pietrostefani (2019) suggest

an elasticity of rent with respect to population density of 0.15,1 while Henderson (2002) estimates an

elasticity of the rent to income ratio with respect to metro area size of 0.32. When not controlling

for area, my results for the elasticity of housing costs with respect to city size almost precisely

match those of Combes et al. (2018). They report an elasticity of 0.11, while my estimation yields

an elasticity of 0.12. Combes et al. (2018) interpret this specification as the costs of unrestricted

city size, while controlling for area corresponds to a city that is restricted from expanding outwards.

The estimates suggest that the costs of unrestricted city size are very similar in our two contexts,

with the difference between our main estimates coming exclusively from the area-restricted version.

An intuitive explanation for this finding could the be stringent building height regulations in France

(Jedwab et al., 2022). If a city is not allowed to expand outwards, constructing higher buildings

is one of the remaining solutions to accommodate a larger population. The extent to which this

1 Ahlfeldt and Pietrostefani (2019) is a meta-study that discusses the effects of density on multiple outcome variables.
When I use density, instead of the more flexible specification of population and area, I obtain an estimate of 0.21,
which is statistically significant at the 1% level.

57



solution is embraced will affect the increase in housing costs associated with a growing population.2

My work also expands the evidence on the geographical heterogeneity of the elasticity of housing

costs with respect to city size. I compute separate regressions for the six countries with the highest

number of cities in the sample (the United States, Russia, China, India, Brazil, and Mexico) and for

the eurozone. The estimated elasticity is above the global average for the United States and Russia

and is particularly high in the eurozone and India.3 The estimate for the eurozone is within 0.04

percentage points from what Combes et al. (2018) estimate for comparably large French cities when

using their non-linear specification. These findings point again towards an above average elasticity

of housing costs with respect to city size for large European cities. While Chauvin et al. (2017)

focus on agglomeration economies rather than urban costs, their work includes estimations of the

elasticity of housing costs with respect to city size for the United States, Brazil, China, and India.

My results are similar to theirs for the US, China, and Brazil, but they are very different for India,

where Chauvin et al. (2017) do not find any effect of city size on housing rents. However, they

do control for neither property nor city characteristics and they estimate the price of an average

housing unit instead of a housing unit at the city center. When I apply their second-stage estimation

strategy, I also find an elasticity that is indistinguishable from zero.

Being surrounded by many people might not always be beneficial. For Mexico, I estimate a sta-

tistically significantly negative coefficient for population and a statistically significantly positive

coefficient for area. This finding implies that denser cities are cheaper in the Mexican context. I

conjecture that crime might be a driver of this finding. The country is in the midst of a drug

war (see, for example, Shirk and Wallman, 2015) and safety concerns are probably more important

than elsewhere. I explore this hypothesis by adding an interaction term between log population

and a city’s homicide rate. My results show that Mexican cities with high homicide rates have a

statistically significantly more negative elasticity of housing costs with respect to city size. I then

proceed with the global sample and test the interaction between city size and an indicator for being

among the 50 cities with the world’s highest homicide rates. Cities in that group have a less positive

elasticity of housing costs with respect to city size. The difference is statistically significant and

quantitatively large, with an estimated elasticity that is more than 40% lower. The finding that

crime lowers the elasticity of housing costs with respect to city size complements the evidence that

large cities are more affected by crime (Glaeser and Sacerdote, 1999) and that crime negatively

affects house prices (Pope and Pope, 2012).

The remainder of the paper is organized as follows: Section 2 describes the main data and discusses

city definitions. Section 3 presents the first-stage hedonic regression and results in a ranking of

cities by their estimated short-term rental price at the city center. In Section 4, I use these rental

prices as an input for the second-stage regressions, and I present and discuss the corresponding

2 French central cities often have many beautiful old buildings, and tearing them down is probably not an optimal
solution. Glaeser (2011) discusses this nexus and possible ways forward using the example of Paris.

3 The coefficients are statistically significant at the 5% level for the US, India, and the eurozone, but not for Russia.
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estimation results. Section 5 concludes. Finally, the appendix contains the full city ranking and

several auxiliary results.

2 Data and city definitions

This project relies on two main types of data: geolocalized data on Airbnb properties and spatially

disaggregated population data. I combine the latter with data on city centers and the boundaries

of urban areas to define 734 cities that I include in this study. All of these data are available in an

internationally standardized way, which allows me to conduct the analysis on a global scale. This

section will successively present the data on the Airbnb properties, the city definitions I use and

the data on population sizes of the resulting cities.

Airbnb properties

The data on short-term rental properties from Airbnb come from AirDNA, a company specialized

in “short-term rental data and analytics”.4 They contain close to all properties that were advertised

on Airbnb at least once between 2018-01-01 and 2019-03-25.5 By combining information about days

for which properties are rented with information about the price for these days, AirDNA is able

to estimate the prices actually paid by customers. For every property, I have information about

the average daily price over the twelve months before the date on which a property was last web

scraped from the Airbnb website. I also have the coordinates of the location for each property, even

though some of them are scrambled within a short radius due to security concerns.6 Moreover, the

data contain a substantial number of covariates, from the number of bedrooms to the presence of a

hairdryer. All of these variables are available in an internationally standardized way. Overall, I can

match 3.07 million properties to the 734 cities in my sample, 1.53 million of which were available

for rent or rented for at least 100 of the last 365 days before they were last scraped.7

Cities

It is not straightforward to find a definition of where a city ends and where its center is located. The

problem becomes especially complicated if the definition is supposed to work well for very different

4 https://airdna.co, last accessed: 2023-01-16.
5 To the best of my knowledge, AirDNA web scraped every single property from Airbnb once every three days over this
period. This implies that a small number of properties that appeared only briefly and were immediately removed or
rented might not be part of the dataset.

6 Airbnb recommends that hosts indicate their precise address. However, hosts are free to choose whether they
prefer a precise pin to be shown at the address of their property, or a circle that indicates the approximate lo-
cation in a close radius (https://www.airbnb.com/resources/hosting-homes/a/setting-expectations-with-an-
accurate-location-491?_set_bev_on_new_domain=1686948204_M2FkMTUxYWQzNzNi&locale=en, last accessed: 2023-
06-16). The current maximal deviation from the true location of the property is indicated as 800 meters. When I
obtained the data in 2019, AirDNA suggested an even smaller maximal deviation of 500 meters.

7 The raw dataset contains 9,419,495 observations. However, 2,354,445 of these properties were never reserved. I have
to drop another 1,917 observations because their coordinates are missing. Afterwards, I can spatially join 3,093,755
properties with my city polygons. An additional 25,603 observations drop out because of missing covariates (or a
missing price in one case). In the end, 3,068,152 entries remain.
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countries. Here, I explain the main decisions I make to come to a definition that I deem suitable

for the empirical exercise I conduct.8

I start with the open collaboration database platform OpenStreetMap that relies on crowd intelli-

gence. This website asks users to place so-called city tags “at the center of the city, like the central

square, a central administrative or religious building or a central road junction”.9 These geolo-

calized tags are my first candidates for both cities’ locations and city centers. As a second step,

I spatially join the city tags to all urban center polygons of the Global Human Settlement Layer

project (Florczyk et al., 2019) with a population size of at least 300,000.10 In some cases, urban

center polygons contain multiple city tags. Using the city population counts from OpenStreetMap,

I retain all city tags that are associated with a population count that amounts to at least 40% of

the highest population count in an urban center.11

Figure 1: 734 cities in the sample

Population
300 k − 500 k
500 k − 750 k
750 k − 1.25 mio
1.25 mio − 3 mio
above 3 mio

Note: The dots in this figure show the geographic distribution of the 734 cities in my sample. Their colors
refer to the city’s population size, with larger cities represented in darker shades. To be included in the
sample, a city must have had a population of at least 300,000 inhabitants in 2015 and at least 100 Airbnb
properties that were active between January 2018 and March 2019.

I then manually check all remaining tags using satellite and street view images from GoogleMaps

8 For more details, refer to Nöbauer (2023), where I use the same city definitions and delineations and describe them
more extensively.

9 https://wiki.openstreetmap.org/wiki/Tag:place%3Dcity, last accessed: 2023-01-13. The website also includes
information about many different kinds of geographic tags like motorways, restaurants, or playgrounds. As of 2023-
06-12, the website contains 2.951 billion tags in total (https://taginfo.openstreetmap.org/reports/database_
statistics).

10The basis of the urban centers of Florczyk et al. (2019) are contiguous 1km × 1km grid cells with an estimated
population of at least 1,500 or a built-up area of at least 50%. Their definition results in some cities being very broad
and containing multiple well-known cities, for example Oakland/San Francisco/San José or Kobe/Kyoto/Osaka. In
some of these cases setting one city center for the whole urban area would be very tricky. I therefore decide against
simply adopting their definition. I believe that combining the urban centers from Florczyk et al. (2019) with data on
cities from OpenStreetMap results in a set of cities that is better suited for this analysis.

11 I complement missing population counts on OpenStreetMap with information from Wikipedia.
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and assess whether they are an appropriate choice for the city center. Whenever this is not the case,

I resort to center coordinates from Google Maps. If they also describe a point that visually does

not constitute a suitable center, I provide my own best guess. Once the city centers are determined,

I split urban centers with multiple remaining city tags that are more than 7 km apart, so that it is

likely that they constitute two distinct cities.12 In a final step, I recompute the population size and

the number of Airbnb properties within each city and retain those with at least 300,000 inhabitants

and 100 properties.13 Figure 1 shows the geographic distribution of the resulting 734 cities.

Population counts

The population counts also come from the Global Human Settlement project, more precisely from

the GHS-POP file (Schiavina et al., 2019). They take population data from administrative sources

at the smallest availbale scale. They then disaggregate these data to 1 km × 1 km grid cells using

the proportion of buildings and other artificial structures, detected from day-light satellite images,

with machine-learning.14 They apply the same procedure to satellite images from 2015 and 1975,

which ensures a certain level of intertemporal comparability that is beneficial to my instrumental

variable approach.15

3 First-stage regressions

When assessing the effect of city size on real-estate prices, it is important to use housing units

that are as comparable as possible across cities. Even with standardized data from a single source,

simply computing the average price of units for each city is insufficient. There are two main reasons

for this: First, the size and quality of housing units vary non-randomly. For example, the average

apartment in Paris has fewer bedrooms than the average apartment in Toulon, while the average

one-bedroom apartment in Ho Chi Minh City has more amenities than the average one-bedroom

apartment in Can Tho. Second, differences in the geographical expanse of cities imply differences

in accessibility and transportation costs. The average apartment in Buenos Aires is much farther

away from the city center than the average apartment in Salta, and its inhabitants might spend

considerably more time commuting for work and leisure activities than their counterparts in Salta.

To address the first issue, I estimate a hedonic regression. Apart from a separate intercept for each

12To split the cities, I use a rule described by Akbar et al. (2021): Border points X are assigned such that

dist(X,A)/dist(X,B) = (Pop A/Pop B)
0.57
2 where dist(X,A) denotes the distance of a grid point X to the cen-

ter of city A and dist(X,B) denotes the distance to the center of city B. I reassign enclaves in repeated iterations
until there are no city parts left that do not contain a center. I split cities that span across two countries at the
border, without reassigning enclaves.

13To assess the population size I use the population data presented below. As discribed above, the cutoff of 100 Airbnbs
refers to properties that have been rented at least once.

14They also offer a 100 m × 100 m resolution. However, I keep the 1 km × 1 km grid structure of the GHSL urban
centers for my cities, so I would not gain anything by using the better resolution.

15As discussed in Section 4.1, 40 years are hardly enough for a credible identification of the instrument. Nevertheless,
it is progress to have intertemporally comparable population data on a global scale. I therefore present the results of
an IV specficiation, while cautioning that they should not be interpreted as more than a robustness check.
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city, which is the variable of interest in this first stage, I control for numerous characteristics for each

property, particularly for the number of bedrooms, bathrooms, and the maximum number of guests

allowed.16 I also include indicators for whether guests have the entire apartment for themselves or

have to share the apartment or even their room. As the effect of these core characteristics may well

be nonlinear, I allow for a flexible functional form by including them as categorical variables. The

left column of Figure A1 shows the respective categories and their distribution in the data.

The same column also shows the distribution of other variables for which I control. The number

of photos serves as a proxy for how much effort is put into creating the profile on Airbnb. For

this variable, I also include a squared term, as I expect the marginal effect of additional photos to

be diminishing and potentially even negative at a very high number of pictures. The number of

properties a host has on the platform controls for the fact that certain hosts offer multiple properties.

The final row of Figure A1 shows an indicator for whether a property is within 500 meters of an

ocean or big lake.17 Furthermore, I control for 43 amenities, examples of which include the presence

of a tv, a hairdryer, or a first aid kit, as well as the availability of breakfast or free parking. Figure

A2 displays the list of amenities, with the fraction of properties in which they are available in

brackets.18

The variables in this second group are included either as indicators or modeled using a linear or

quadratic functional form. Moreover, I demean them within each city. To see why this improves

the estimation, consider the amenity “heating”. Without demeaning, there is a selection effect.

Most properties without heating are located closer to the equator. They are not necessarily cheaper

because of the lack of heating, which is unnecessary in the warmest climate zones. However, they

are often located in countries with lower overall price levels.19 Including this variable without

demeaning would therefore result in an overestimation of the effect of heating by absorbing part of

the city-fixed effects. As this first-stage regression aims to estimate the city-fixed effects as precisely

as possible, demeaning helps avoid these biases.

To address the second issue, I follow Combes et al. (2018) in estimating the price of a property

at the city center rather than the price of an average property in a city. The economic intuition

16Unfortunately, I do not have data about the square meter size of an apartment. However, customers usually do not have
access to this information either. It is only available to them if the host explicitly puts it in the property description
or if they have stayed there before. In all other cases, customers cannot consider it for their decision-making, and I,
therefore, expect its influence on prices to be limited.

17This is the only variable that is not directly visible on Airbnb. Instead, the customers can infer it from a map provided
on the website, although Airbnb sometimes scrambles the coordinates to some limited extent (500m at the very most)
for security concerns. Moreover, the hosts seem to have a clear incentive to indicate a location close to a coast or
beach in the description and the photos. To construct these indicators, I measure the air-line distance from a property
to the closest ocean, sea, or big lake (at least 80km2). To determine the location of waters, I use ESRI’s “World
Water Bodies” layer (https://arcgis.com/home/item.html?id=e750071279bf450cbd510454a80f2e63, downloaded
on 2023-10-10) and the HydroLAKES data from https://hydrosheds.org/products/hydrolakes (downloaded on
2023-01-01).

18 I only include amenities that are present in at least 1% of properties. The data include another 34 amenities available
in very few apartments.

19To some extent, this can also be the case within an individual country. For example, in Italy, heating will be more of
a necessity in the northern part of the country, which is also the wealthier part of the country.
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for this builds on two of the most well-known models in urban economics: The Rosen-Roback

model (Rosen, 1979; Roback, 1982), which describes choices between cities, and the monocentric

city model (Alonso, 1964; Mills, 1967; Muth, 1969), which describes choices within cities. The

monocentric city model features households that work in the city center for a given wage, bear

transportation costs for their commute, consume housing, and a composite good. In equilibrium,

the unit cost of housing is more expensive closer to the city center, as people are willing to pay

higher prices to avoid commuting costs. Ex-ante homogeneous agents can end up with different

bundles of a location, housing consumption, and the composite good, with all bundles yielding the

same utility. As long as this equalized within-city utility is given, it does not matter which bundle

is taken for the comparison of agents across cities. It is convenient to make the comparison in the

city center, where transportation costs are zero according to the model’s assumptions. This choice,

in turn, facilitates the comparisons between cities that underpin the utility equalization across

cities in the Rosen-Roback model. In the model’s equilibrium, wage differences and amenities

counterbalance differences in housing costs. Measuring the housing costs at the city center implies

that transportation costs can be left out of the comparison.20 While the present paper is exclusively

concerned with estimating the housing cost aspect of this comparison, it is important to bear this

bigger picture in mind.

Empirically, I implement the measurement at the city center by estimating both an intercept µc

and a distance gradient βc for each city c. I add +1 to the distance to the city center to be able to

interpret a distance of ln(1) = 0 as the city center. My preferred first-stage regression has the form

ln(price)ic = µc + βcln(distance+1)ic + γXic + δ(Zic − Z̄c) + εic , (1)

where Xic denotes a set of core categorical variables for the type of the listing and the number of

bedrooms, bathrooms, and the maximum number of guests allowed. The baseline categories are

the respective modes (see Table A1). Zic denotes the second set of variables and amenities that are

included with a specified functional form and demeaned by city.

A city fixed effect µc, therefore, has the interpretation of the log price of an apartment in city c that

is located at the city center, rented out in its entirety to a maximal number of two guests, has one

bedroom and one bathroom, and characteristics that match the city average for all variables in Zic.

Taking the exponential of the city fixed effect yields the USD price of this representative property.

3.1 Excluding apartments available only during price spikes

The founders of Airbnb got the idea for their business when participants of a conference in San

Francisco struggled to find available hotel rooms (Gallagher, 2017). Some long-term tenants also

20 In reality, people face transportation costs even if they live at the very center of a city, and these transportation costs
vary across cities. However, I consider it probable that the comparison at the city center minimizes both the level of
transportation costs and the differences in transportation costs between cities.
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rent out their apartments while they are on vacation. In these cases, Airbnb can contribute to a more

efficient capacity utilization of living space rather than merely displacing one kind of occupant with

another. However, these cases also threaten the validity of using Airbnb data for my study. Major

events can lead to a temporary surge in price. Examples include events with changing venues, such

as the Super Bowl, but also annually recurring events like Art Basel. One might argue that such

events contribute to the general attractiveness of a city and that an increase in price is, therefore,

justified. However, if there is also a surge in the properties offered on Airbnb to take advantage of

the temporarily higher prices, these marginal properties will have an average nightly rate that is

much higher than what could be charged on a yearly basis. These properties will therefore bias the

estimated prices for the concerned cities upwards. Before constructing a ranking of cities by their

price level, I will try to mitigate that problem by excluding properties that are only on the market

for a short time to capitalize on exceptionally high prices.

I do this by imposing a minimum number of nights in which a property is either reserved, or free

and available for reservation. However, it is not evident how to choose a suitable cutoff. I use

the Men’s FIFA World Cup that took place in Russia from June 14th to July 15th, 2018, as a

natural experiment. My sample contains 44 Russian cities, nine of which hosted games during the

tournament.21

I run the first-stage regression on multiple subsets with increasingly strict cutoffs for the minimum

number of nights on the market. The first set includes all properties in my sample of cities. The

second subset only includes properties reserved or available for at least 25 out of 365 nights. I then

proceed in steps of 25 nights, eventually reaching the strict requirement of 200 nights. For each

regression and all Russian cities in the sample, I estimate the price for a representative property in

the city center as defined above.

Figure 2 shows the results of this exercise. It depicts Russian cities that hosted World Cup games

in blue and cities that did not host world cup games in yellow. Host cities are inherently different.

Prices in these cities are higher even for properties on the market for most nights. This regularity

makes intuitive sense, as games are usually played in larger cities that can provide the required

infrastructure. However, more relevantly, the price gap between host and non-host cities decreases

in the number of nights on the market. It is most prominent for the whole sample without restrictions

and then declines monotonically for most pairs of cities. Depending on the city, removing properties

that were only on the market for less than 25, 50, or 75 nights leads to a substantive drop in the

estimated price. The decline then fades out, with a modest change associated with removing

properties that were reserved or available between 75 and 100 nights. Removing properties that

were on the market beyond 100 nights does not change the estimated prices in any significant way,

with the blue lines becoming essentially horizontal. With at least 100 nights on the market, the

remaining properties will hardly be inhabited by ordinary long-term tenants capitalizing on major

21 In total, the world cup was played in 12 stadiums, with Moscow featuring two venues. However, Saransk and Sochi
do not meet the cutoff of 300,000 inhabitants to be included in the sample.
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Figure 2: Price of a representative apartment at the city center: Russia
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Note: The figure shows nightly US Dollar prices of a representative short-term rental property at the city
center for the 44 Russian cities in my sample. I estimate the prices by taking the exponential of city-fixed
effects that are the output of 9 different hedonic regressions. These hedonic regressions differ in the subset of
Airbnb properties they consider. The 44 coefficients at the right end of the x-axis are based only on properties
that were available or rented on at least 200 of the last 365 nights before a property was last scraped. When
moving further left on the x-axis, weaker cut-off values apply. Cities that hosted games during the Men’s
Fifa World Cup 2018 are shown in blue, while cities that did not are depicted in yellow.

price surges.

Non-host cities show no general trend along the whole spectrum of subsets, with the estimates be-

coming slightly more dispersed as the considered properties get scarcer. While these cities certainly

also have varying demands over the year, only major events seem to lead to a notable rise in Airbnb

properties supplied that can explain the pattern of prices. It is reassuring that one non-host city

also features higher prices over the year while still displaying a stable estimated price across the

different subsets. This city is Vladivostok, which was disregarded as a venue to have shorter travel

distances (FIFA, 2010).

As a consequence of this analysis, I limit the data to properties that were reserved or available at

least 100 out of 365 days. Due to this restriction, I lose about half of the properties, leaving me

with slightly more than 1.53 million observations.
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3.2 First-stage results

I then continue to estimate equation (1). Table A1 lists all 734 cities by their nightly short-term

rental rate of a representative property at the city center. As defined above, that property can be

rented in its entirety by a maximum number of two guests, has one bedroom and one bathroom, and

corresponds to the average within its city regarding all other characteristics. Given the data and

methodology I use, the most expensive city is Amsterdam, with a nightly rate of 252 USD, followed

by San Francisco (243 USD), London (231 USD), and New York (225 USD). My second-stage

regressions are based on (the logs of) these prices.

While these cities on top of the list are all infamous for high housing prices, they are also major

tourist destinations. Perhaps as a consequence of this combination, all four cities introduced some

regulation regarding Airbnb properties early on (see, for example, von Briel and Dolnicar, 2021).

I cannot rule out that differences in the strictness of these regulations influence prices for such

illustrious cities. However, given this study’s large number of cities, I do not expect this to be a

significant issue for my second-stage analysis. To control for the exposure to tourism, I include the

number of Airbnbs per 1,000 inhabitants as a control variable in the second stage.

The right column of Figure A1 shows the estimated coefficients of the control variables for the

first-stage hedonic regression. The number of bedrooms, bathrooms, and maximum allowed guests

all increase the price of a property monotonically, although the differences between the individual

coefficients vary. For example, a host can charge substantially more if she allows two guests instead

of one. Hosting three instead of two guests increases prices by much less. Compared to the other

coefficients, the type of the listing has a large effect on prices, with shared rooms coming with a

particular markdown.

More photos in the ad correlate with higher prices, with a slightly diminishing marginal return.

Apartments offered by hosts with several properties on the platform are more expensive. These

hosts might learn to optimize traveler experience when spending a lot of time on the platform,

allowing them to charge higher prices. They might also be able to charge more if they have market

power on particular submarkets. Finally, properties close to an ocean or big lake are more expensive.

Figure A2 assesses the effects of various amenities. The amenities most positively related to price

are air conditioners, pools, and TVs. There are also amenities that are negatively correlated with

price. The heterogeneity of these cases suggests there are several different explanations for this.

Examples include situations where the necessity of an amenity points towards an inconvenience,

like a lock on the bedroom door or room darkening shades, as well as amenities that signal that an

apartment is not optimized for travelers, like children’s books and toys or a washer.

3.3 Robustness checks

I perform extensive checks to assess the robustness of my first-stage results. For each version, I

recalculate a ranking with the estimated prices at the city center. Table A2 reports the correlations
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between the prices estimated with the different specifications, while Table A3 shows corresponding

Spearman’s rank correlations.

Specification A denotes the baseline version described above. Specification B restricts the sample

to the category “entire home/apartment,” dropping listings classified as “private room” (29% of

all listings) and “shared room” (2%). Entire apartments are certainly what first comes to mind

when thinking about the long-term rental market and might therefore appear to provide the closest

correspondence. However, people also share apartments or rooms for extended periods, a prominent

example being university students.

The data on Airbnbs also contain information about customer ratings, albeit for a reduced number

of properties (74% of all properties in my sample of cities, but 90% of properties that were reserved

or available at least 100 out of 365 days). Specification C controls for the demeaned ratings in

the following categories: accuracy, check-in, cleanliness, communication, and value. I abstain from

including the location rating as it might interfere with the distance gradients. Specification D

controls for all amenities in the data, even if they are available only in very few properties.

There is a slight subtlety concerning the control for a location within 500m of an ocean or big

lake: I demean all variables other than the number of bedrooms, bathrooms, the maximal number

of guests, and the listing type by city. This implies that the representative property located at

the city center has the characteristics of an average property in the city. However, when it comes

to proximity to a large water body, the city center is either located close to a big lake or ocean,

or it is not. In that sense, controlling for demeaned water proximity implies a somewhat flawed

interpretation. On the other hand, omitting it means ignoring a factor that considerably impacts

real estate prices while being correlated with proximity to the city center. Therefore I report both,

with specification E omitting demeaned water distance.

Specifications F and G revisit the exclusion of properties that have been on the market for less than

100 of 365 days. Specification F includes all properties reserved at least once and thus having a

revealed price. Including them approximately doubles the number of properties I can use to compute

the first-stage regressions. However, it can lead to overestimating prices for cities with important

events during a limited number of days. In contrast, specification G applies a more stringent

requirement of 125 days on the market, resulting in a drop of another 240,000 properties. A few

prices seem unrealistically high and are most likely erroneous. Therefore, my main specification

winsorizes prices to each country’s 0.01 and 0.99 percentiles. Specification H uses the prices at face

value without winsorizing.

Specifications I and J refer to the choice of the city center. As described in Section 2 and in Nöbauer

(2023), my city centers are mainly based on city tags set on OpenStreetMap using crowd intelligence.

Together with a research assistant I evaluated all of these centers. Whenever they do not withstand

a visual assessment, I continue with Google Maps city coordinates. If these are also suboptimal, I

propose my own best guess. In contrast, specification I uses the coordinates from OpenStreetMap
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for all cities, while specification J uses the coordinates from Google Maps. Moreover, specification

K uses ln(distance) instead of ln(distance + 1) to compute the distance gradients.

Specification L introduces a new way of demeaning. It demeans the same variables as the baseline

specification. However, instead of demeaning them by city, I split the properties in each city into

two subsets according to their air-line distance to the city center. I then demean the variables by

city halves. This procedure is less prone to confound the effects of amenities with the distance

gradients. For example, the amenity street parking negatively affects a property’s price. This

amenities suggests the absence of a garage or another secured parking facility. However, very central

properties might not have any parking possibility and may yet be highly attractive. Therefore, part

of the negative effect of street parking might be because it is a proxy for non-central locations. This

problem is alleviated by demeaning within the groups of more central and less central properties in

each city.

Overall, the results of the robustness tests are reassuring. The median price correlation across

specifications A to L is 0.98, and the median rank correlation is 0.95.

Finally, specification M computes a ranking based on estimated average rental prices in the city,

instead of estimated rental prices at the city center. It is based on the same first-stage hedonic

regression as the other specifications, but it does not include distance gradients. This specification

exhibits substantially lower correlations with the other specifications. However, the correlations

are still 0.92 (prices) and 0.89 (rents), which might not be surprising given the large international

differences in price levels.

3.4 Comparison with longterm rental data

In principle, people offering Airbnb properties compete for the same apartments as long-term renters.

Living space is the primary input for the service offered by Airbnb. There is no apparent reason why

other inputs like furniture or labor conducted by cleaners should vary differently between locations

for the two markets. Therefore, in a market economy, we can expect Airbnb prices to be high in

places with high long-term rentals and vice versa.22 However, long-term rentals are substantially

regulated in some countries, especially concerning existing tenants. Therefore, the results in this

paper reflect the market for new long-term rentals more closely, as they are usually less regulated.

As a further validity test, I compare my estimates to center prices estimated using long-term rental

data. I do this for France and the United States; a choice driven by data availability. Unfortunately, I

do not have access to property-level long-term rental data, so I rely on aggregated data on a granular

geographic dimension.

For France, I work with la carte des loyers.23 This map is provided by the French government

22The period covered by my data ensures that the estimates are not influenced by the Covid pandemic with all its
implications, which were very different for the two sectors.

23The data can be found on https://www.data.gouv.fr/fr/datasets/carte-des-loyers-indicateurs-de-loyers-
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and is based on 7 million real estate ads posted between 2018 and 2022 on seloger.com and

leboncoin.fr. It displays prices estimated by a hedonic regression for 34,980 French communes

and arrondissements.24 451 of these geographical units are located in one of the 12 (functional)

French cities in my study.25 I regress the log of the rents from la carte des loyers on a city intercept

and a city distance gradient for each city in my sample. Panel A of Figure A3 presents the results.

The axes depict the city intercepts, which can be interpreted as the log prices for representative

properties at the city center, once estimated using data from Airbnbs and once from la carte des

loyers. The correlation is relatively high. Both sources also consistently estimate the extent to

which Paris is an outlier in the French context; a regularity that is also found by Combes et al.

(2018).

For the United States, I use data from the American Community Survey. The data cover 2015-2019

and are spatially disaggregated at the block group level.26 I regress the log of median rents on a city

intercept and city gradient for each city. Unlike above, the rents are summary statistics from survey

responses rather than the result of a hedonic regression. Therefore, I control for a list of covariates

linked to real estate at the block group level.27 Similar to above, Panel B of Figure A3 compares

the city intercepts estimated using long-term and short-term rental data for the United States.

There is again a clear positive correlation between the two, albeit it is less clear-cut than that for

France. One explanation for this discrepancy could be that I have data on all types of renters in the

US, not only for apartments currently on the market. Taking long-term tenants into consideration

implies a larger impact of rent control or subsidized housing, with differences in the extent of such

programs and rules between cities. Moreover, the US has more local autonomy regarding taxes and

public services than France. More remote places might be attractive for institutional reasons, which

can impact gradients and, indirectly, the estimated prices at the city center. However, overall, the

mapping between prices estimated using Airbnb properties on the one hand and long-term rental

data on the other seems reasonably good.28

dannonce-par-commune-en-2022/ (downloaded on 2023-02-17.)
24This constitutes the complete universe of French communes except for 17 communes in Mayotte. For the large cities
of Paris, Marseille, and Lyon, the information is available at the level of arrondissements (neighborhoods). Their
hedonic regression accounts for surface area, average surface per room, as well as year, trimester, and source of the
ad.

25 I spatially join the centroids of the communes and arrondissements to the city polygons. I drop an additional six
communes, which are within the extent of my cities but do not host any Airbnb that was on the market for at least
100 days.

26The data cover 219,773 block groups. 80,550 of these block groups (measured at their centroid) are within one of the
70 US cities in my sample. I further restrict the analysis to the 43,636 block groups that host an Airbnb, which meets
the minimum criterium of 100 nights available or reserved.

27For each block group, I have information about the fraction of apartments that meet certain brackets in the following
categories: bedrooms, units in the building, construction year of the building, and year the tenant moved in. Moreover,
I control for the fraction of apartments with a kitchen, with plumbing, and for whether the block group borders an
ocean or a big lake.

28 In the case of the US, there are three outliers in Sandy, West Valley City, and Overland Park. These are three of the
very few cases in which the global rules, according to which I delimitate cities, lead to suboptimal outcomes. Overland
Park might be more accurately described as part of Kansas City, while Sandy and West Valley City should probably
form a single city with Salt Lake City.
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4 Second-stage regressions

In the second stage, I regress the logs of the prices obtained in the first stage on log city size while

controlling for a list of city characteristics. The literature on agglomeration effects typically uses

either population or population density to explain wage differentials across cities. Henderson et al.

(2021) test more elaborate density measures, but find that they do not offer a real improvement over

simply using population density. I mostly follow Combes et al. (2018) in using the log of population

size as my primary variable of interest while controlling for log area. This approach can be seen

as an unrestricted version of population density, in which the coefficients of population and area

are not coerced to be the opposite of each other. Combes et al. (2018) also provide an economic

intuition to this approach: Controlling for area is the equivalent of restricting a city from expanding

outwards when it is confronted with a higher population size. Correspondingly, they find city size

to increase real estate prices more strongly when they control for area, compared to when they do

not.

Table 1: Summary statistics, variables of second-stage regressions

Variable Mean SD Q10 Median Q90 N

Price of representative apartment 54.10 35.98 23.11 40.50 105.49 733

Population in 2015 2,102,975 3,690,911 359,257 906,728 4,219,852 733

Population in 1975 1,018,667 1,854,413 141,651 473,417 2,029,259 733

Area in km2 404 603 83.81 215 846 733

Compactness 0.72 0.11 0.57 0.74 0.85 733

Elevation in m 327 557 13.40 79.68 1,126 733

Difference to 21.11°C 6.74 4.45 1.39 5.79 13.01 733

Located by ocean or big lake 0.35 0.48 0.00 0.00 1.00 733

Capital 0.16 0.36 0.00 0.00 1.00 733

Airbnbs per 1,000 inhabitants 2.77 4.48 0.16 1.04 7.77 733

In 50 cities with most homicides 0.06 0.24 0.00 0.00 0.00 733

Homicides per 100k (Mex) 36.57 33.22 6.10 27.51 86.43 38

Borders USA (Mex) 0.08 0.27 0.00 0.00 0.00 38

Table 1 presents summary statistics of the variables used for these second-stage regressions. Ele-

vation and temperature also come from the Global Human Settlement project.29 For temperature,

I follow Chauvin et al. (2017) in considering the difference to 21.11°C, which they characterize as

29They are included in a dataset that describes their urban centers. In some instances, I split these urban centers
into more than one city (see Section 2 and Nöbauer, 2023). While I can precisely compute the area and estimated
population size for these divided cities, I have the data on temperature and elevation only for the entire urban centers.
In the case of split cities, I assign the values of the underlying urban center to all cities that emerge through these
splits.
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the “middle ground within the [...] range that is often discussed an ideal for human comfort” (p.

27).30 I lose one observation (Weihai in China) because of a missing value regarding temperature.

Capital is an indicator variable for whether a city is the national capital of its respective country,

while “[l]ocated by ocean or big lake” is an indicator for whether a city borders a major water body.

The first-stage hedonic regression already includes an indicator variable for whether a property is

located close to an ocean or big lake (≥ 80km2). However, besides influencing the price of individ-

ual properties, being located at a shore might also impact how cities as a whole are organized and

experienced. I also include a measure of the number of Airbnb properties per 1,000 inhabitants to

control for the attractiveness of a city to tourists.

Moreover, using my city polygons, I compute a compactness measure based on Angel et al. (2020).

It assesses how much the shape of a city resembles a circle on a scale from 0 to 1. Technically, I

compute a circle with the same area as the city itself around each city’s centroid and then measure

the proportion of the circle that intersects with the shape of the city (the “exchange” measure in

Angel et al., 2020). The rationale for this is that accessibility is dependent not only on the size of

the area in which a given population is distributed, but also on the form that area takes. A circular

area makes it easier to provide a high level of accessibility from many locations than a drawn-out

or ramified one. The differences in accessibility can, in turn, affect how much people are willing to

pay to live in the city center. Figure A4 shows the measure for four exemplary cities corresponding

to the highest compactness value, the 75% quantile, the 25% quantile, and the lowest compactness

value in the sample.

4.1 Second-stage results

Table 2 shows the main results of my second-stage regressions. All six specifications include country-

fixed effects, which implies that I estimate the elasticity of housing costs with respect to city size

from within-country variation. The population coefficient is statistically significant at the 1% level

in all OLS specifications. Without any controls, I estimate an elasticity of housing costs with respect

to city size of 0.139. Once I control for area, this coefficient increases to 0.164. This implies that

the association between population size and housing costs is stronger when cities are not allowed

to expand outwards. In that case, every additional person must be absorbed by infill (less green

space or vacant plots within the city), vertical growth (taller buildings), or reduced living space

per person (smaller housing units or more people per housing unit). The difference between the

population coefficients under the two settings is 0.025 without additional controls, but it increases

to 0.042 once the other controls are introduced.

Column 4 shows my preferred specification. It reports an elasticity of housing costs with respect

to city size of 0.161. In other words, if the population size of a city increases by 10%, housing

costs rise by 1.61%. This global estimate is somewhat smaller than the estimates of the elasticity of

house prices with respect to city size that Combes et al. (2018) report for France. Their estimates

30They separately consider temperature differences in January and July, while I only have annual averages.
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Table 2: Main specifications

Dependent Variable: log(Price of representative apartment at city center)

Model: (1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS IV IV

log(Population) 0.139∗∗∗ 0.164∗∗∗ 0.119∗∗∗ 0.161∗∗∗ 0.118∗∗∗ 0.153∗

(0.015) (0.057) (0.013) (0.050) (0.016) (0.084)

log(Area) -0.030 -0.050 -0.042

(0.063) (0.053) (0.087)

Compactness -0.045 -0.054 -0.045 -0.053

(0.118) (0.112) (0.118) (0.113)

Elevation (100m) -0.007∗ -0.007∗ -0.007∗ -0.007∗

(0.004) (0.004) (0.004) (0.004)

Difference to 21.11°C 0.002 0.002 0.002 0.002

(0.007) (0.007) (0.007) (0.007)

By ocean / big lake 0.055 0.054 0.055 0.055

(0.043) (0.045) (0.043) (0.045)

Capital 0.106∗ 0.105∗ 0.108∗ 0.106∗

(0.057) (0.057) (0.058) (0.059)

Airbnbs per 1,000 0.030∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.029∗∗∗

(0.006) (0.006) (0.006) (0.006)

Cragg-Donald F-Stat 2,959.6 268.0

Note: The table shows regressions of the estimated price of a representative short-term rental property at
the city center on city size and control variables. The units of observation are 733 cities. All specifications
include country fixed effects. Population in 2015 is instrumented by population in 1975 for the IV specifica-
tions. The parentheses show standard errors, which are clustered by country. The levels of significance are *
p < 0.10, ** p < 0.05, *** p < 0.01.

range from 0.176 to 0.305, with their preferred estimate being 0.208. At the same time, their

estimated area-unrestricted elasticity is 0.109, which is almost precisely what I find. The fact that

the difference manifests itself in the area-restricted elasticity could be consistent with French cities

being more limited in vertical growth by stricter regulations than cities elsewhere. However, it is

important to keep in mind that my sample consists of cities that are, on average, more than 12

times larger than the cities used by Combes et al. (2018). They also estimate an elasticity that is

non-linear in population size and find (area-restricted) estimates as large as 0.288 of a city with

one million inhabitants and 0.378 for a city as large as Paris. Comparing these estimates with mine

suggests that the housing costs in big French cities increase faster in city size than the housing costs

in big cities elsewhere.

Columns 5 and 6 mirror the specifications of columns 3 and 4, but introduce an instrumental
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variable approach. I instrument log population in 2015 with log population in 1975. The idea is

that today’s price level (and other recent developments that affect it) might cause people to move

into (or away from) a given city and, might therefore, bias the estimation. At the same time, long-

past population counts should be unaffected by it. In applying this strategy, I follow a standard

approach introduced by Ciccone and Hall (1996) and used amongst others by Combes et al. (2008)

and Combes et al. (2018). Unlike these papers, my work deals with a worldwide sample, and,

unfortunately, it is impossible to find ancient population counts on that scale. The advantage of the

1975 population data I use, apart from its existence, is that it is provided by the same source, built

using the same principles, and covering the same grid as the 2015 population data. However, 40

years are not enough to alleviate concerns about the instrument’s validity. As Chauvin et al. (2017),

who use population data from 1980 to construct an IV, I argue that columns 5 and 6 should not be

interpreted as more than a robustness check. The point estimates are almost unchanged between

columns 3 and 5, with the variable of interest still being statistically significant at the 1% level.

When I control for area, the coefficient of log population decreases from 0.161 to 0.153 between the

OLS and the IV estimation. It is only statistically significant at the 10% level in the IV setting,

compared to the 1% level with OLS.

Concerning the control variables, I estimate capital cities to be about 10.6% more expensive than

other cities, with the effect being statistically significant at the 10% level. A higher number of

Airbnbs is associated with higher prices. This relation is statistically significant at the 1% level.

The predicted housing cost difference between a city at the 25% quantile and a city at the 75%

quantile of Airbnb properties is 0.079. A statistically significant (at the 10% level) relation exists

between elevation and housing costs. However, given that the average elevation is 328 meters, with

a median of 80 meters, this effect is quantitatively small. Moreover, I estimate more compact cities

to be cheaper and cities at the seaside to be more expensive beyond the properties close to the

shore. However, neither of these effects is statistically significant.

Importance of fixed effects

Table A4 explores the explanatory power of the different sets of variables. The first column regresses

the log price of the representative apartment at the city center merely on the logs of population and

area. Without country-fixed effects, the direction of the effect switches. This behavior is consistent

with the fact that lower income countries tend to have denser cities with less living space per person

(Jedwab et al., 2021). Specification (2) consists of the control variables only. The point estimates

of the controls go in the same direction as in the full specification, but they are larger, which can be

explained by the omission of the country-fixed effects. Log population and log area alone (column

1) and the controls alone (column 2) explain an R2 of around 0.3.

The R2 increases to 0.48 in column (3), which includes both the logs of population and area and

the controls. Adding controls without country-fixed effects still results in a negative correlation
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Table 3: Heterogeneity by country

Dependent Variable: log(Price of representative apartment at city center)

Model: (1) (2) (3) (4) (5) (6) (7)

USA Eurozone Russia China India Brazil Mexico

log(Population) 0.23∗∗ 0.33∗∗∗ 0.19 0.11 0.43∗∗ 0.05 -0.36∗∗

(0.10) (0.08) (0.18) (0.12) (0.16) (0.09) (0.17)

log(Area) -0.07 -0.13 0.09 0.02 -0.25 0.05 0.52∗∗

(0.12) (0.10) (0.22) (0.13) (0.19) (0.11) (0.19)

Compactness -0.38∗∗ 0.33 -0.30 -0.32 -0.22 0.35 -0.74

(0.18) (0.32) (0.43) (0.32) (1.21) (0.23) (0.50)

Elevation (100m) -0.03∗∗∗ -0.03 -0.03 0.00 0.00 0.00 0.00

(0.01) (0.03) (0.03) (0.01) (0.03) (0.01) (0.01)

Difference to 21.11°C 0.02∗∗∗ 0.08∗∗∗ 0.00 -0.01∗ -0.05 -0.01 -0.02

(0.01) (0.01) (0.01) (0.01) (0.05) (0.01) (0.02)

By ocean / big lake -0.12∗∗ -0.03 0.04 0.20∗∗ 0.19 0.03 0.08

(0.05) (0.06) (0.07) (0.08) (0.27) (0.07) (0.14)

Airbnbs per 1,000 0.04∗∗∗ 0.02∗∗∗ 0.05∗∗ 0.04∗∗∗ 0.74∗∗ 0.10∗∗∗ 0.10∗∗∗

(0.01) (0.00) (0.02) (0.01) (0.34) (0.03) (0.02)

Country fixed effects - Yes - - - - -

Observations 70 76 44 112 31 44 38

Note: The table shows regressions of the estimated price of a representative short-term rental property at
the city center on city size and control variables. The units of observation are cities. The parentheses show
standard errors clustered by country for specification 2 (eurozone) and heteroscedasticiy robust standard er-
rors for all other specifications. The levels of significance are * p < 0.10, ** p < 0.05, *** p < 0.01.

between population count and price.31 Specification (4) exclusively contains country-fixed effects

and shows that they alone generate a R2 of 0.74. Columns (5) and (6) mirror specifications (2) and

(4) of Table 2. Adding the logs of population and area increases the R2 to 0.78, while additionally

adding controls raises it to 0.81.

Geographic heterogeneity

Table 3 repeats the analysis for the six countries with the highest number of cities in the sample,

and for the eurozone. Given the low number of observations, these results should be taken with a

grain of salt. Nevertheless they show some interesting regularities.

I estimate a statistically significantly positive elasticity for the United States, India, and the euro-

31An obvious omitted control variable in this specification is income. I do not include it since all other second-stage
regressions either include country-fixed effects or focus on one particular country. Spatially disaggregated within-
country data on income per capita is not readily available on a global scale.
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zone. In all cases, the estimated elasticity is higher than for the full global sample, with particularly

large effects in the latter two. While the elasticity is also somewhat higher in Russia, the estimate is

not statistically significant. My results for China and Brazil show positive estimates that are below

the world-average and not statistically significant. Mexico is the only country that completely falls

out of line. It shows a statistically significant effect that is negative and large. This implies that

city size is negatively correlated with housing costs in the Mexican context. I will come back to this

below.

As stated above, Combes et al. (2018) find an elasticity of 0.29 for a city with one million inhab-

itants in the French context. The average eurozone-city in my sample has a population of 1.07

million, which makes that a good comparison. Estimating a model with country-fixed effects for

the eurozone, I find a coefficient of 0.33. It is hard to check whether France is representative for the

eurozone. If it is, this finding would suggest that the elasticity of housing costs with respect to city

size is indeed increasing in city size. Moreover, the estimated elasticity from Combes et al. (2018)

might be on the higher end of the global spectrum.

There are at least two plausible explanations for the lower and not statistically significant estimates

for Russia, China, and Brazil and for the fact that the coefficient of log area is estimated to be

positive. First, these countries might have less stringent regulations concerning building heights

or building over green spaces. They might also simply have more room for infill. Second, the

results might also be biased towards zero because of data quality issues. While China has the

highest number of cities in the sample, delineating the cities and setting their center was harder

than anywhere else. For example, the maps displayed by Google Maps are not superimposable to

satellite images for Chinese cities because of government regulations. Instead they are shifted in a

non-monotonic way (Fuentes, 2019). In contrast, the United States and the eurozone have higher

numbers of Airbnbs in the sample than all other countries mentioned in Table 3. This might lead

to more precisely estimated housing costs in the first-stage.

While Table 3 does not include capital dummies, Table A5 repeats the analysis without the two

largest cities for each entity.32 Most of the results are very robust to the exclusion of these cities.

The notable exception is Russia, where the coefficient drops from 0.19 to 0.02 after the exclusion

of Moscow and Saint Petersburg, implying that the positive relation between city size and housing

costs is entirely driven by these two metropolises.

Comparison with Chauvin et al. (2017)

Chauvin et al. (2017) also provide recent estimates of the elasticity of housing costs with respect

to city size for multiple countries. They focus on other aspects of the spatial equilibrium, amongst

others on agglomeration economies. However, an appendix to their paper includes such estimates

for the United States, Brazil, China, and India. They estimate their regressions using OLS and IV

32The excluded cities are New York, Los Angeles, Paris, Madrid, Moscow, Saint Petersburg, Shanghai, Beijing, Delhi,
Mumbai, São Paulo, Rio de Janeiro, Mexico City, and Guadalajara.
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specifications, based on data from 2010 and with the population in 1980 as an instrument.33 This is

close enough to the years I use (population data from 2015, short-term rental prices from 2018-19,

population from 1975 as an instrument) to expect similar results.

Table A6 presents this comparison. All point estimates correspond to the effect of log population.

My preferred OLS specification includes the same controls as Table 3 but excludes area to be con-

sistent with the estimates from Chauvin et al. (2017).34 My preferred IV specification additionally

instruments log population in 2015 with log population in 1975. Our results are very similar for

the US, where the data availability is the best.35 Chauvin et al. (2017) present a specification with

log rent and another one with log price as the dependent variable, and my estimates fall right in

between the two. I get somewhat lower point estimates for Brazil while confirming the positive

and statistically significant elasticity of housing costs with respect to city size. They also report

two separate regressions for China. My preferred estimates are again between the two estimates of

Chauvin et al. (2017).

The similarity of the results disappears in the case of India. Chauvin et al. (2017) find no statistically

significant effect of city size on housing rents for India, with point estimates narrowly above and

below zero. They do find agglomeration economies for India that are about 50% higher than for

the US, which implies that real wages must increase in city size. They explain this with low

migration rates and geographical differences in the level of education but also acknowledge that

the data quality of their rent data might offer another explanation (p. 32). In contrast, I do

find a statistically significant positive relation between short-term rental prices and city size. The

corresponding coefficient is about 35% larger than that for the United States. If amenities increase

less (or decrease more) with city size than in the US, this could very well be in line with the standard

spatial equilibrium model whose applicability to the Indian context is challenged by Chauvin et al.

(2017).

There are some notable methodological differences concerning the estimation of this elasticity. First,

Chauvin et al. (2017) do not report to account for property-level characteristics, while my rental

price indices are the outcome of hedonic regressions. Second, I estimate prices at the city center,

while Chauvin et al. (2017) appear to use city fixed effects without accounting for any geographical

within-city dimension. They also do not use city-level controls in the second stage. If I adjust my

methodology concerning the second-stage regression, I also estimate elasticities for India that are

very small and statistically indistinguishable from zero. While the same pattern emerges for the US

and China, albeit to a smaller degree, the results for Brazil are unchanged (strips 3 and 4 of Table

33They also include IV estimates based on older population counts: 1900 for the United States, 1920 for Brazil, 1950 for
China, and 1951 for India. I restrict my comparison to their first set of IV estimates as it provides better comparability.

34They also report coefficients of regressions using density as the independent variable. Those results are qualitatively
similar, except for house prices in China, where they report statistically significant effects of around 0.22.

35Chauvin et al. (2017) work with household level data and report the following sample sizes: 24.4 mio / 44 mio
(rent/price) for the US, 818 k for Brazil, 6.7 k / 25 k (rent/price) for China, and 3.3 k for India. My work builds on
the following numbers of Airbnb properties that were available at least 100 out of 365 nights: 282 k for the US, 36 k
for Brazil, 169 k for China, and 9.4 k for India.
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A6).

Homicides and the elasticity of housing costs with respect to city size

Why are the results that different for Mexico? One possible explanation could be the level of

crime. Glaeser and Sacerdote (1999) argue that “it is ironic that the same urban advantages, lower

transport costs, faster urban information flows, and the same scale economies that help to make

cities more productive also increase the level of crime in the city” (p. 241). Safety considerations

might not affect the attractiveness of cities too much when the overall level of crime is low. However,

Mexico is in a drug war and experienced over 72,000 homicides in 2018 and 2019 alone.36 It seems

plausible that population density can seem frightening in such an environment. In a Roback (1982)

type setting, crime can act as a negative amenity, with crime-ridden places having to offer higher

wages or lower real estate prices in equilibrium. If the probability of becoming the victim of a crime

increases in city size, this can explain why the positive relationship between city size and real estate

prices might not hold in places with high crime rates.

Table 4 explores this dimension. Column (1) reports the baseline regression for the 38 Mexican cities

in my sample.37 I include a dummy for whether a city borders the United States since I expect the

Mexican real estate market and potentially also crime rates to be affected by proximity to the US.

Column (2) includes the homicide rate per 100,000 inhabitants and an interaction term between the

homicide rate and population size. The data originate from the “Instituto Nacional de Estad́ıstica

y Geograf́ıa” and are cleaned and made available by Diego Valle-Jones.38 I use the average of the

2018 and 2019 homicide rates. The yearly average homicide rate among the 38 Mexican cities in my

sample is 36.6 per 100,000 inhabitants (see Table A4), while the average population size of these

cities is 1.46 million.

I find a negative interaction between homicides and population size that is statistically significant

at the 10% level. This result implies that the negative correlation between short-term rental prices

and city size that I find in the Mexican context is particularly strong for cities with a high homicide

rate. While controlling for the homicide rate makes the baseline effect of population size smaller

and statistically insignificant, its point estimate is still negative. However, if crime is indeed a driver

of this reverse effect, it is plausible that even the safer cities in Mexico are affected to some degree.

I, therefore, try to go beyond Mexico. Column 3 of Table 4 replicates the baseline specification for

the entire worldwide sample. Column 4 adds an indicator for whether a city appears in the 2018

or 2019 versions of the list of the 50 cities with the highest homicide rates that is published each

year by the “Consejo Ciudadano para la Seguridad Pública y la Justicia Penal AC”.39 The baseline

36This number is based on the same data from the INEGI that I describe below.
37The crime data are based on metro areas and includes several big municipios that are not part of a metro area. For
details, see https://github.com/diegovalle/mxmortalitydb, last accessed on 2023-06-11. I match these metro areas
to my cities by name and verify that they include the same center. However, the boundaries of the metro areas and
my cities differ to some extent.

38 I last downloaded the data on 2023-06-09 from https://github.com/diegovalle/mxmortalitydb.
39 I downloaded the rankings on 2023-05-27 from https://geoenlace.net/seguridadjusticiaypaz/webpage/
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Table 4: Interaction with the homicide rate

Dependent Variable: log(Price of representative apartment at city center)

Extent: Mexico Mexico World World

Model: (1) (2) (3) (4)

log(Population) -0.284 -0.201 0.161∗∗∗ 0.164∗∗∗

(0.191) (0.189) (0.050) (0.050)

log(Area) 0.419∗ 0.451∗∗ -0.050 -0.050

(0.215) (0.218) (0.053) (0.054)

Compactness -0.820 -0.919 -0.054 -0.050

(0.491) (0.581) (0.112) (0.113)

Elevation (100m) 0.002 0.004 -0.007∗ -0.007∗

(0.006) (0.006) (0.004) (0.004)

Difference to 21.11°C -0.007 -0.012 0.002 0.002

(0.020) (0.019) (0.007) (0.007)

By ocean / big lake 0.058 0.089 0.054 0.054

(0.128) (0.145) (0.045) (0.044)

Capital 0.105∗ 0.100∗

(0.057) (0.058)

Airbnbs per 1,000 0.106∗∗∗ 0.106∗∗∗ 0.029∗∗∗ 0.029∗∗∗

(0.022) (0.024) (0.006) (0.006)

Borders USA 0.254∗ 0.382∗∗∗

(0.149) (0.118)

Homicides per 100k 0.051∗

(0.025)

log(Population) × Homicides per 100k -0.004∗

(0.002)

In 50 most homicides 0.961∗∗∗

(0.339)

log(Population) × In 50 most homicides -0.069∗∗∗

(0.024)

Country fixed effects - - Yes Yes

Observations 38 38 733 733

Note: The table shows regressions of the estimated price of a representative short-term rental property at
the city center on city size and control variables. The units of observation are cities. The parentheses show
heteroscedasticity robust standard errors in models (1) and (2) and standard errors clustered by country in
models (3) and (4). The levels of significance are * p < 0.10, ** p < 0.05, *** p < 0.01.
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effect of being in this ranking is positive, which reflects the fact that most of these cities are located

in upper-middle-income countries.40 However, there is a negative interaction between city size and

being one of the cities with the highest homicide rates. The corresponding regression coefficient is

statistically significant at the 1% level. I estimate the elasticity of housing costs with respect to

city size to decrease from 0.164 to 0.095 for the most dangerous cities according to this definition.

5 Conclusion

In this paper, I estimate the elasticity of housing costs with respect to city size. I conduct the

analysis on a worldwide scale, using 733 cities with at least 300,000 inhabitants and 100 Airbnb

properties. I am able to work on this international scale because I use novel data on short-term

rental properties from Airbnb as a proxy for housing costs. In a first-stage hedonic regression, I

estimate the price of a representative property at the center of each city. I then use these prices in a

second-stage regression, regressing them on population, area, city-level controls, and country-fixed

effects.

My preferred estimate of the elasticity of housing costs with respect to city size is 0.16. This is

somewhat less than the estimate of 0.21 that Combes et al. (2018) find for a sample of French cities

that are more than 12 times smaller on average. When not controlling for area, both our samples

yield an estimate of 0.11. I find the elasticity to differ substantially by country/region, estimating

a coefficient of 0.33 for the eurozone. This is in line with non-linear estimates that Combes et al.

(2018) provide for a hypothetical French city with one million inhabitants (0.29) and for Paris

(0.38). Assuming that French cities and other cities in the eurozone are alike, this supports their

finding of a non-linear elasticity of housing costs with respect to city size.

It also suggests that large eurozone cities face above-average elasticities of housing costs with respect

to city size compared to other large cities worldwide, as do cities in India. In particular, I estimate

elasticities that are positive but considerably smaller and not statistically significant for Russia

(in particular without Moscow and Saint Petersburg), China, and Brazil. Especially given the

small sample sizes of these country regressions, I cannot rule out that data issues drive part of this

discrepancy. However, given that I control for city area, I hypothesize that stricter building height

regulations in the eurozone and India might play some role, by limiting how much the housing stock

can adjust as a reaction to population growth. Infill development within the existing boundaries of

a city can play a similar role of adjustment, where cities in the eurozone and India might contain

fewer empty plots.

An alternative and perhaps complementary explanation is based on the Rosen-Roback model

(Rosen, 1979; Roback, 1982). The model predicts that differences in wages, housing costs, and

archivos.php.
40To classify countries by income, I use the World Bank definitions, available at https://datahelpdesk.worldbank.

org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (last accessed: 2023-06-09).
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urban amenities counterbalance each other. If a city has high wages and low housing costs, it will

most likely not have good amenities. Otherwise, residents from other cities would move, driving

housing costs up and wages down. Each of the three factors has an elasticity with respect to city

size. Concerning the elasticity of wages with respect to city size, empirical research tends to find

larger agglomeration effects in developing countries than in high-income countries (Chauvin et al.,

2017; Henderson et al., 2021). Combining this evidence with my findings on urban costs has impli-

cations about the elasticity of amenities with respect to city size. If wages in the eurozone increase

less in city size and housing costs increase more, the Rosen-Roback model would predict that the

quality of amenities increases more strongly in city size in the eurozone (or decreases less strongly

in city size) than elsewhere.

Finally, the suggestive evidence of a negative elasticity of housing costs with respect to city size

for Mexico, and the negative interaction between that elasticity and homicides, both in Mexico

and worldwide, open room for future research. While Glaeser and Sacerdote (1999) find crime to

increase in city size for the United States, Ahlfeldt and Pietrostefani (2019) find it to decrease in

density in other OECD countries. Which types of crime affect other urban costs (and perhaps also

benefits) in which contexts remains an exciting open question.
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Figure A1: Control variables of hedonic regression
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Note: The left column of the figure shows the distributions of all hedonic first-stage regression control
variables not classified as “amenities”. For the last four panels of this column, the variables are demeaned by
subtracting their respective city average. The right column shows the corresponding regression coefficients,
with 99% confidence intervals based on standard errors that are clustered by city. The number of observations
used in the regression is 1,532,862.
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Figure A2: Control variables of hedonic regression: amenities
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Note: The y-axis shows all 43 amenities which are available in at least 1% of the Airbnb properties in the
sample, with the proportion of properties in which the respective amenity is available in brackets. I demean
all of these amenities by city and include them as control variables in the first-stage hedonic regression. The
figure shows the estimated coefficients of these variables, together with 99% confidence intervals based on
standard errors that are clustered by city. The number of observations used in the regression is 1,532,862.
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Table A1: Estimated nightly short-term
rental rate of a representative apartment at

the city center in USD

1 Amsterdam NLD 252.26

2 San Francisco USA 242.82

3 London GBR 230.98

4 New York USA 224.78

5 Austin USA 186.78

6 Boston USA 182.45

7 Seattle USA 166.25

8 Washington USA 163.31

9 Copenhagen DNK 161.39

10 Miami USA 160.57

11 Paris FRA 158.82

12 Dubai ARE 158.47

13 Kuwait City KWT 157.47

14 Portland USA 157.11

15 Stockholm SWE 151.17

16 Dublin IRL 150.95

17 Chicago USA 149.43

18 Zürich CHE 148.15

19 Sydney AUS 146.44

20 Las Vegas USA 140.62

21 Long Branch USA 140.52

22 Roma ITA 138.42

23 München DEU 136.79

24 Edinburgh GBR 136.58

25 New Orleans USA 135.81

26 Oakland USA 134.11

27 San Diego USA 131.99

28 Denver USA 131.71

29 Honolulu USA 131.57

30 Lagos NGA 131.31

31 Vancouver CAN 131.17

32 Milano ITA 130.26

33 Göteborg SWE 130.21

34 Atlanta USA 127.99

35 Columbus USA 127.88

36 Oslo NOR 125.63

37 San Juan PRI 125.18

38 Cardiff GBR 125.07

39 Sarasota USA 123.59

40 Frankfurt am Main DEU 123.48

41 Genève CHE 123.45

42 Brighton GBR 123.33

43 Detroit USA 122.85

44 Liverpool GBR 122.40

45 Basel CHE 121.79

46 Cleveland USA 121.79

47 Tokyo JPN 121.41

48 Grand Rapids USA 120.92

49 Toronto CAN 120.58

50 Berlin DEU 118.12

51 Indianapolis USA 118.09

52 Louisville USA 115.67

53 Denpasar IDN 115.49

54 Singapore SGP 115.28

55 San Antonio USA 115.12

56 Charlotte USA 115.11

57 Philadelphia USA 114.56

58 Los Angeles USA 114.50

59 Hong Kong CHN 113.72

60 Pittsburgh USA 113.19

61 Hamburg DEU 111.48

62 Houston USA 111.40

63 Kinshasa COD 110.87

64 Utrecht NLD 110.78

65 Firenze ITA 109.86

66 Manchester GBR 109.49

67 Barcelona ESP 108.27

68 Kyoto JPN 108.14

69 Fort Worth USA 107.80

70 Jerusalem ISR 106.49

71 Sacramento USA 106.39

72 Milwaukee USA 105.76

73 Palma ESP 105.69

74 Québec CAN 105.55

75 Tel Aviv ISR 105.27

76 Hialeah USA 104.85

77 Fort Lauderdale USA 104.58

78 Cincinnati USA 103.13

79 Minneapolis USA 102.84

80 Bristol GBR 102.39

81 Dallas USA 100.34

82 Wien AUT 100.23

83 Providence USA 99.98

84 Kansas City USA 99.60

85 Tucson USA 99.30

86 Phoenix USA 98.95

87 Orlando USA 98.44

88 Baltimore USA 98.31

89 Oklahoma City USA 98.30

90 Leiden NLD 97.63

91 Auckland NZL 97.52

92 San Jose USA 97.50

93 Southampton GBR 97.41

94 Köln DEU 97.37

95 Omaha USA 97.22
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96 Concord USA 96.71

97 Belfast GBR 96.14

98 Rotterdam NLD 95.59

99 Den Haag NLD 95.52

100 Manama BHR 95.39

101 Jacksonville USA 95.38

102 Des Moines USA 95.35

103 Helsinki FIN 95.23

104 Tampa USA 95.07

105 Montréal CAN 94.38

106 Bologna ITA 94.23

107 Saint Louis USA 94.10

108 Beijing CHN 93.82

109 Bordeaux FRA 93.40

110 Leeds GBR 93.23

111 Bilbao ESP 92.10

112 Sevilla ESP 91.46

113 Praha CZE 90.99

114 Bruxelles BEL 90.94

115 Adelaide AUS 90.38

116 Memphis USA 90.04

117 Fresno USA 89.50

118 Düsseldorf DEU 89.38

119 Colorado Springs USA 88.78

120 Melbourne AUS 88.70

121 Glasgow GBR 88.66

122 Antwerpen BEL 88.55

123 Saint Petersburg USA 88.48

124 Salt Lake City USA 88.17

125 Nürnberg DEU 87.71

126 Stuttgart DEU 86.97

127 Madrid ESP 86.65

128 Strasbourg FRA 86.27

129 Newcastle upon Tyne GBR 86.23

130 Birmingham GBR 86.02

131 Moscow RUS 85.98

132 Port of Spain TTO 85.33

133 Dayton USA 84.90

134 Cartagena COL 84.87

135 Osaka JPN 84.67

136 Lyon FRA 83.63

137 Kolkata IND 83.34

138 Leicester GBR 83.20

139 Sapporo JPN 83.03

140 Rochester USA 82.18

141 Bakersfield USA 82.06

142 Ottawa CAN 81.71

143 Norfolk USA 81.69

144 Nottingham GBR 81.48

145 Cape Town ZAF 81.01

146 Jeonju KOR 80.89

147 Gold Coast AUS 80.84

148 Nice FRA 80.81

149 Accra GHA 80.38

150 Buffalo USA 80.02

151 Hannover DEU 79.29

152 Luanda AGO 78.85

153 Brisbane AUS 78.22

154 Sheffield GBR 77.85

155 Lille FRA 77.51

156 Kingston JAM 77.27

157 Aurora USA 77.07

158 Bergamo ITA 77.05

159 Xiamen City CHN 77.01

160 Tulsa USA 76.91

161 Tainan TWN 76.72

162 Lisboa PRT 76.09

163 Sendai JPN 75.77

164 Ogden USA 75.64

165 Málaga ESP 75.59

166 Kanazawa JPN 75.26

167 Augsburg DEU 74.98

168 Calgary CAN 74.95

169 Albuquerque USA 74.83

170 Asahikawa JPN 74.43

171 Bloemfontein ZAF 74.24

172 Hull GBR 74.04

173 Bonn DEU 73.72

174 Tallinn EST 73.64

175 Fukuoka JPN 72.94

176 Marrakesh MAR 72.63

177 Portsmouth GBR 71.51

178 Bremen DEU 71.40

179 Dresden DEU 70.67

180 Overland Park USA 70.67

181 Leipzig DEU 70.11

182 Naha JPN 69.65

183 Porto PRT 69.21

184 Zhoushan CHN 69.08

185 Winnipeg CAN 68.93

186 Perth AUS 68.73

187 Torino ITA 68.65

188 Coventry GBR 68.21

189 Ensenada MEX 68.08

190 Beirut LBN 67.72

191 Bangkok THA 67.36

192 Seoul KOR 67.34

193 Stockton USA 67.31
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194 Haiphong VNM 67.10

195 Hangzhou CHN 66.98

196 Granada ESP 66.17

197 Napoli ITA 65.97

198 Chaozhou CHN 65.89

199 Suzhou CHN 65.88

200 London CAN 65.64

201 Liège BEL 65.59

202 Dortmund DEU 65.46

203 Toulouse FRA 65.22

204 València ESP 64.46

205 Edmonton CAN 64.36

206 Taipei TWN 64.33

207 Sjanghai CHN 64.23

208 Genova ITA 64.21

209 Mannheim DEU 63.93

210 Lahore PAK 63.48

211 Fez MAR 63.36

212 Datong CHN 63.30

213 Budapest HUN 63.29

214 Haifa ISR 63.22

215 Nantes FRA 63.21

216 Matsuyama JPN 63.05

217 Doha QAT 62.93

218 Zaragoza ESP 62.45

219 Kitakyushu JPN 62.31

220 Rouen FRA 62.24

221 Wenzhou CHN 61.84

222 Sanya CHN 61.79

223 Mumbai IND 61.70

224 Agadir MAR 61.69

225 Stoke-on-Trent GBR 61.60

226 Kumamoto JPN 61.43

227 Abidjan CIV 61.33

228 Takamatsu JPN 61.18

229 Katowice POL 61.11

230 Bochum DEU 60.88

231 Huancayo PER 60.87

232 Essen DEU 60.84

233 Kitchener CAN 60.71

234 Bari ITA 60.68

235 Petah Tikva ISR 60.61

236 Nagoya JPN 60.54

237 Saint Petersburg RUS 59.93

238 Riga LVA 59.83

239 Shaoxing CHN 59.66

240 Las Palmas ESP 59.37

241 Nairobi KEN 59.26

242 Vladivostok RUS 59.12

243 Marseille FRA 58.73

244 Athens GRC 58.58

245 Bayuquan CHN 58.48

246 Qingdao CHN 58.42

247 Abu Dhabi ARE 57.72

248 Shenzhen CHN 57.70

249 Kraków POL 57.33

250 Panamá PAN 57.32

251 Windhoek NAM 57.15

252 Vilnius LTU 56.49

253 Dali CHN 56.30

254 Kobe JPN 56.23

255 Viña del Mar CHL 55.85

256 Surrey CAN 55.04

257 Hiroshima JPN 55.01

258 Zagreb HRV 54.87

259 Kaohsiung TWN 54.85

260 Bratislava SVK 54.77

261 Gelsenkirchen DEU 54.35

262 Ahmedabad IND 54.11

263 Istanbul TUR 53.78

264 Brno CZE 53.69

265 Tijuana MEX 53.45

266 Shillong IND 53.42

267 Casablanca MAR 53.18

268 Alicante ESP 52.96

269 Grenoble FRA 52.93

270 Toulon FRA 52.83

271 Zhaoqing CHN 52.51

272 Kampala UGA 52.36

273 Mérida MEX 52.05

274 Sharjah ARE 52.02

275 Bydgoszcz POL 51.88

276 Colombo LKA 51.80

277 New Taipei TWN 51.60

278 Taichung TWN 51.59

279 Gdansk POL 51.33

280 Wroclaw POL 51.13

281 Douala CMR 50.93

282 San Pedro Sula HND 50.65

283 Kyiv UKR 50.56

284 Murcia ESP 50.51

285 Yangzhou CHN 50.43

286 Addis Ababa ETH 50.42

287 Durban ZAF 50.39

288 Xiangyang CHN 50.30

289 Amman JOR 49.90

290 Dalian CHN 49.81

291 Warszawa POL 49.75

88



292 Valledupar COL 49.54

293 Duisburg DEU 49.32

294 Hsinchu TWN 48.97

295 Poznan POL 48.68

296 Guangzhou CHN 48.65

297 Lublin POL 48.44

298 Oaxaca MEX 48.13

299 Palermo ITA 47.98

300 Catania ITA 47.92

301 Lusaka ZMB 47.80

302 Santa Cruz d. Tenerife ESP 47.70

303 Prayagraj IND 47.57

304 Mazatlán MEX 47.11

305 Johannesburg ZAF 47.05

306 Kigali RWA 46.71

307 Taoyuan TWN 46.66

308 Muscat OMN 46.60

309 Tianjin CHN 46.59

310 Mombasa KEN 46.56

311 Chiayi TWN 46.47

312 Wuppertal DEU 46.42

313 Karachi PAK 46.33

314 Toshkent UZB 45.94

315 Tangier MAR 45.87

316 Liangshan CHN 45.87

317 Changsha CHN 45.76

318 Samara RUS 45.63

319 Abuja NGA 45.59

320 Quanzhou CHN 45.40

321 George Town MYS 45.32

322 Cotonou BEN 45.30

323 Meknes MAR 45.29

324 Binhai New Area CHN 45.13

325 Huizhou CHN 45.08

326 Nizhny Novgorod RUS 45.05

327 Chengdu CHN 45.00

328 Ciudad de México MEX 44.85

329 Udaipur IND 44.76

330 Bandaraya Melaka MYS 44.71

331 Huaiyin CHN 44.70

332 Daegu KOR 44.49

333 Zhanjiang CHN 44.46

334 Acapulco MEX 44.40

335 Nanjing CHN 43.98

336 Omsk RUS 43.97

337 Thessaloniki GRC 43.91

338 Fuzhou CHN 43.86

339 Chongqing CHN 43.86

340 Temuco CHL 43.62

341 Ningbo CHN 43.38

342 Buenos Aires ARG 43.29

343 Minsk BLR 43.13

344 Rabat MAR 42.96

345 Port Elizabeth ZAF 42.87

346 Kuala Lumpur MYS 42.75

347 Kazan RUS 42.49

348 Changzhou CHN 42.48

349 Plovdiv BGR 42.45

350 Rio de Janeiro BRA 42.40

351 Harare ZWE 42.37

352 Kagoshima JPN 42.34

353 Nha Trang VNM 42.25

354 Antalya TUR 42.15

355 Huangdao District CHN 42.11

356 Yaoundé CMR 42.11

357 San José CRI 41.90

358 Sandy USA 41.82

359 Dhaka BGD 41.62

360 Cuernavaca MEX 41.50

361 Algiers DZA 41.33

362 Weifang CHN 41.19

363 Santo Domingo DOM 40.73

364 Lodz POL 40.72

365 West Valley City USA 40.59

366 Chiang Mai THA 40.58

367 Delhi IND 40.50

368 Xining CHN 40.34

369 Florianópolis BRA 40.13

370 Monterrey MEX 40.13

371 Tétouan MAR 39.99

372 Port-au-Prince HTI 39.85

373 Meilan District CHN 39.85

374 Maputo MOZ 39.83

375 Santiago DOM 39.70

376 Nanchang CHN 39.66

377 Wuhan CHN 39.62

378 Tangshan CHN 39.58

379 Ho Chi Minh City VNM 39.58

380 Jaipur IND 39.57

381 Guayaquil ECU 39.50

382 Mexicali MEX 39.39

383 Santa Marta COL 39.37

384 Bucharest ROU 39.34

385 Zhenjiang CHN 39.14

386 São Paulo BRA 39.10

387 Concepción CHL 39.03

388 Ürümqi CHN 38.82

389 Cancún MEX 38.78
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390 Busan KOR 38.69

391 Yekaterinburg RUS 38.65

392 Weihai CHN 38.56

393 Meizhou CHN 38.48

394 Morelia MEX 38.42

395 Baguio PHL 38.38

396 Montevideo URY 38.27

397 Yerevan ARM 38.05

398 Nanning CHN 38.05

399 Wuxi CHN 38.04

400 Shijiazhuang CHN 37.60

401 La Habana CUB 37.55

402 Gwangju KOR 37.53

403 Freetown SLE 37.47

404 Santa Cruz d. l. Sierra BOL 37.40

405 Phnom Penh KHM 37.38

406 Guilin CHN 37.27

407 Lanzhou CHN 37.27

408 Nur-Sultan KAZ 37.23

409 Antananarivo MDG 37.14

410 Tampico MEX 37.13

411 Pukou CHN 36.99

412 Kandy LKA 36.80

413 Xi’an CHN 36.72

414 Querétaro MEX 36.69

415 Daejeon KOR 36.63

416 Zhongshan CHN 36.63

417 Cairo EGY 36.62

418 Belgrade SRB 36.58

419 Dakar SEN 36.53

420 Santos BRA 36.45

421 Rizhao CHN 36.42

422 Odesa UKR 36.16

423 Quanshan CHN 36.14

424 Pune IND 35.97

425 Kota Kinabalu MYS 35.92

426 Zanzibar City TZA 35.88

427 Hrodna BLR 35.82

428 Kochi IND 35.80

429 Maceió BRA 35.77

430 Sofia BGR 35.75

431 Zhuhai CHN 35.72

432 Chisinau MDA 35.45

433 Yichang CHN 35.44

434 Praia Grande BRA 35.44

435 Varanasi IND 35.36

436 Mar del Plata ARG 35.33

437 Guiyang CHN 35.15

438 Pretoria ZAF 35.10

439 Rostov-on-Don RUS 35.07

440 Santa Fe ARG 34.88

441 Mendoza ARG 34.84

442 Jiaxing CHN 34.82

443 Kenitra MAR 34.74

444 Sarajevo BIH 34.63

445 Corrientes ARG 34.63

446 Yantai CHN 34.62

447 Tolyatti RUS 34.61

448 Coimbatore IND 34.60

449 Rawalpindi PAK 34.53

450 Lviv UKR 34.48

451 Orizaba MEX 34.20

452 Qinhuangdao CHN 34.18

453 Tver RUS 34.09

454 Santiago CHL 34.08

455 Oran DZA 34.00

456 Salta ARG 33.88

457 Makassar IDN 33.82

458 Puebla MEX 33.76

459 Nangang CHN 33.70

460 Subang Jaya MYS 33.68

461 Baku AZE 33.68

462 Pohang-si KOR 33.47

463 Bengaluru IND 33.37

464 Ipoh MYS 33.37

465 Krasnodar RUS 33.31

466 Izhevsk RUS 33.31

467 Cúcuta COL 33.27

468 Pucallpa PER 32.86

469 Chihuahua MEX 32.84

470 Piura PER 32.84

471 Salvador BRA 32.67

472 Tbilisi GEO 32.66

473 Liuzhou CHN 32.56

474 Novokuznetsk RUS 32.55

475 Ciudad Obregón MEX 32.47

476 Ulsan KOR 32.44

477 Volgograd RUS 32.31

478 Celaya MEX 32.28

479 Darjeeling IND 32.28

480 Barranquilla COL 32.23

481 Jingdezhen CHN 32.20

482 Luoyang CHN 32.17

483 Tula RUS 32.16

484 Dnipro UKR 32.04

485 Puducherry IND 32.03

486 Dar es-Salaam TZA 31.99

487 Honghuagang CHN 31.94
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488 Vung Tau VNM 31.81

489 Hanoi VNM 31.79

490 Astrakhan RUS 31.77

491 Posadas ARG 31.67

492 Jinan CHN 31.62

493 Zhangzhou CHN 31.60

494 Alajuela CRI 31.53

495 Tyumen RUS 31.51

496 Quito ECU 31.50

497 Leshan CHN 31.44

498 Tegucigalpa HND 31.40

499 Fortaleza BRA 31.38

500 Zhuzhou CHN 31.37

501 Baotou CHN 31.35

502 Jiujiang CHN 31.24

503 Phuket THA 31.24

504 Xishan CHN 31.21

505 Kaifeng CHN 31.21

506 Cusco PER 31.11

507 Nantong CHN 31.06

508 Almaty KAZ 31.06

509 Hefei CHN 31.05

510 Ciudad Juárez MEX 31.02

511 Magnitogorsk RUS 30.98

512 Cagayan de Oro PHL 30.95

513 Dujiangyan CHN 30.90

514 Chennai IND 30.84

515 San Juan ARG 30.80

516 Rosario ARG 30.80

517 Serrekunda GMB 30.72

518 Joinville BRA 30.71

519 Manila PHL 30.70

520 Tirana ALB 30.67

521 Aguascalientes MEX 30.62

522 Jodhpur IND 30.62

523 Kota Bharu MYS 30.58

524 Beihai CHN 30.55

525 Penza RUS 30.46

526 Jinhua CHN 30.28

527 Guadalajara MEX 30.21

528 Córdoba ARG 30.20

529 Ribeirão Preto BRA 30.12

530 Vila Velha BRA 30.06

531 Tunis TUN 29.98

532 Huadu CHN 29.90

533 Cuenca ECU 29.76

534 Hyderabad IND 29.63

535 Zigong CHN 29.56

536 Hohhot CHN 29.56

537 Davao City PHL 29.55

538 Sousse TUN 29.50

539 Tiexi CHN 29.43

540 Ciudad de Guatemala GTM 29.41

541 Changchun CHN 29.25

542 Yaroslavl RUS 29.22

543 Campinas BRA 29.14

544 Lipetsk RUS 29.10

545 Dongguan CHN 29.08

546 São José do Rio Preto BRA 29.06

547 Novosibirsk RUS 28.99

548 Wuhu CHN 28.99

549 Taiyuan CHN 28.91

550 Medelĺın COL 28.87

551 Campo Grande BRA 28.84

552 Kaliningrad RUS 28.81

553 Eskisehir TUR 28.80

554 Cuiabá BRA 28.67

555 Taguatinga BRA 28.64

556 La Plata ARG 28.53

557 Panlong CHN 28.52

558 Mianyang CHN 28.50

559 Irapuato MEX 28.39

560 Asunción PRY 28.33

561 Toluca MEX 28.13

562 Foshan CHN 28.12

563 Skopje MKD 28.11

564 Bacolod PHL 28.11

565 Khabarovsk RUS 28.10

566 Goiânia BRA 27.97

567 Izmir TUR 27.90

568 Belém BRA 27.85

569 Curitiba BRA 27.84

570 Bukit Mertajam MYS 27.82

571 San Luis Potośı MEX 27.74

572 Chandigarh IND 27.69

573 Canoas BRA 27.66

574 Niterói BRA 27.66

575 San Salvador SLV 27.65

576 Medan IDN 27.61

577 Zibo CHN 27.60

578 Caxias do Sul BRA 27.51

579 Lomé TGO 27.41

580 Taishan District CHN 27.39

581 Vinnytsia UKR 27.36

582 Yangon MMR 27.26

583 Pereira COL 27.23

584 Belo Horizonte BRA 27.23

585 Kajang MYS 27.17
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586 Mysuru IND 27.16

587 João Pessoa BRA 27.14

588 Yanji CHN 27.06

589 Brest BLR 27.03

590 Vientiane LAO 26.92

591 Qingyuan CHN 26.88

592 Villahermosa MEX 26.81

593 Cheonan-si KOR 26.78

594 Bursa TUR 26.77

595 Bishkek KGZ 26.77

596 Mahilyow BLR 26.75

597 Zhengzhou CHN 26.71

598 Santiago de Cali COL 26.71

599 Belgorod RUS 26.69

600 Bogotá COL 26.67

601 Mangaluru IND 26.67

602 Chiclayo PER 26.65

603 Recife BRA 26.62

604 Zhangjiakou CHN 26.53

605 León MEX 26.51

606 Pikine SEN 26.47

607 Teresina BRA 26.45

608 Porto Alegre BRA 26.40

609 Can Tho VNM 26.39

610 Pachuca MEX 26.34

611 Baoding CHN 26.21

612 Torreón MEX 26.19

613 Ulaanbaatar MNG 26.10

614 Jaboatão dos Guara. BRA 26.00

615 Cebu City PHL 25.98

616 Xinxiang CHN 25.98

617 Bhubaneshwar IND 25.97

618 Kharkiv UKR 25.95

619 Irkutsk RUS 25.94

620 Jundiáı BRA 25.90

621 Quezon City PHL 25.90

622 Iloilo City PHL 25.80

623 Shantou CHN 25.77

624 Yogyakarta IDN 25.69

625 Tomsk RUS 25.63

626 Durango MEX 25.48

627 Uberlândia BRA 25.38

628 Voronezh RUS 25.29

629 Dandong CHN 25.29

630 Hengyang CHN 25.26

631 Manaus BRA 25.22

632 Ibagué COL 25.21

633 Surakarta IDN 25.17

634 Beibei CHN 25.17

635 Krasnoyarsk RUS 25.05

636 Hermosillo MEX 25.03

637 Indore IND 25.02

638 Vitsebsk BLR 25.00

639 Villavicencio COL 24.93

640 Naberezhnye Chelny RUS 24.88

641 Veracruz MEX 24.80

642 Natal BRA 24.65

643 Juiz de Fora BRA 24.64

644 Kuching MYS 24.57

645 Coatzacoalcos MEX 24.55

646 Londrina BRA 24.53

647 Saltillo MEX 24.40

648 Da Nang VNM 24.35

649 Yinchuan CHN 24.33

650 Saratov RUS 24.31

651 Culiacán MEX 24.23

652 Seremban MYS 23.99

653 Smolensk RUS 23.76

654 Tucumán ARG 23.65

655 São Lúıs BRA 23.60

656 Kathmandu NPL 23.45

657 Jingzhou CHN 23.42

658 Cheboksary RUS 23.32

659 Hengshui CHN 23.27

660 Aracaju BRA 23.24

661 Yongchuan CHN 23.08

662 Arequipa PER 23.05

663 Changping CHN 22.85

664 Ufa RUS 22.83

665 Langfang CHN 22.81

666 Chelyabinsk RUS 22.59

667 Klang MYS 22.54

668 Hue VNM 22.49

669 Ivanovo RUS 22.40

670 São José dos Campos BRA 22.38

671 Hunnan CHN 22.31

672 Quilpué CHL 22.25

673 Homyel BLR 22.18

674 Maringá BRA 22.05

675 Dehradun IND 21.99

676 Novo Hamburgo BRA 21.98

677 Bauru BRA 21.97

678 Arusha TZA 21.80

679 Agra IND 21.71

680 Jilin CHN 21.63

681 Mykolaiv UKR 21.27

682 Ulan-Ude RUS 21.22

683 Jakarta IDN 21.19
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684 Lima PER 21.09

685 Ryazan RUS 21.06

686 Ouagadougou BFA 20.87

687 Kemerovo RUS 20.84

688 La Paz BOL 20.81

689 Uberaba BRA 20.77

690 Batam IDN 20.75

691 Ankara TUR 20.72

692 Santiago de Cuba CUB 20.69

693 Tepic MEX 20.41

694 Riyadh SAU 20.40

695 Semarang IDN 20.15

696 Neiva COL 20.07

697 Campina Grande BRA 20.03

698 Pasto COL 20.02

699 Mbour SEN 20.01

700 Nagpur IND 19.79

701 Shunyi CHN 19.68

702 Stavropol RUS 19.65

703 Mataram IDN 19.53

704 Angeles PHL 19.33

705 Orenburg RUS 19.21

706 Cochabamba BOL 19.11

707 Nashik IND 19.00

708 Zaporizhzhia UKR 18.95

709 Xalapa MEX 18.62

710 Kisumu KEN 18.37

711 Sorocaba BRA 18.11

712 Tuxtla Gutiérrez MEX 17.94

713 Manizales COL 17.73

714 Guwahati IND 17.58

715 Bucaramanga COL 17.52

716 Barnaul RUS 17.42

717 Luxor EGY 16.79

718 Vadodara IND 15.96

719 Lianyungang CHN 15.72

720 Surabaya IDN 14.53

721 Piracicaba BRA 14.45

722 Trujillo PER 13.99

723 Lucknow IND 13.31

724 Villa Nueva GTM 13.27

725 Bryansk RUS 13.11

726 San Lorenzo PRY 12.95

727 Managua NIC 12.78

728 Bandung IDN 10.95

729 Kumasi GHA 10.79

730 Jeddah SAU 10.72

731 Monteŕıa COL 10.44

732 Srinagar IND 10.28

733 Caracas VEN 9.82

734 Mandalay MMR 5.54
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Table A2: Correlations, price of a representative apartment at the city center

A B C D E F G H I J K L M

A 1.00

B 0.96 1.00

C 0.99 0.96 1.00

D 0.99 0.96 0.99 1.00

E 1.00 0.96 0.99 0.99 1.00

F 0.97 0.94 0.97 0.96 0.97 1.00

G 1.00 0.96 0.99 0.99 0.99 0.96 1.00

H 1.00 0.96 0.99 0.99 1.00 0.97 1.00 1.00

J 0.98 0.95 0.98 0.97 0.98 0.96 0.98 0.98 1.00

K 0.95 0.93 0.95 0.94 0.95 0.93 0.95 0.95 0.97 1.00

L 0.98 0.96 0.98 0.99 0.98 0.96 0.98 0.98 0.99 0.96 1.00

M 1.00 0.96 0.99 0.99 0.99 0.97 0.99 1.00 0.97 0.95 0.98 1.00

N 0.92 0.90 0.92 0.92 0.91 0.92 0.91 0.92 0.95 0.94 0.95 0.91 1.00

Note: For this table, I recompute the ranking of cities by their estimated nightly short-term rental rate of
a representative apartment at the city center (Table A1). The table reports correlation coefficients of the
estimated USD prices among all rankings. Specification A refers to the baseline version as shown in Table
A1. B is based only on entire apartments, excluding properties that are shared. C controls for ratings. D
controls for all possible amenities. E does not control for proximity to the shore of an ocean or big lake. F
includes all properties that have been rented at least once. G includes all properties that have been rented or
available at least 125 of 365 days. H uses prices not windsorized to the 0.01 and 0.99 percentiles by country.
Specification I uses the centers from OSM for all cities. J uses the centers from Google Maps for all cities.
K uses ln(distance) instead of ln(distance + 1) to compute the distance gradients. L divides the properties
in each city in halfs, according to their distance to the city center, and then demeans by city halfs. Finally,
M uses average retal prices instead of rental prices at the city center by not including distance gradients.
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Table A3: Rank correlations, price of a representative apartment at the city center

A B C D E F G H I J K L M

A 1.00

B 0.94 1.00

C 0.98 0.94 1.00

D 0.99 0.94 0.97 1.00

E 1.00 0.94 0.98 0.98 1.00

F 0.93 0.89 0.93 0.92 0.93 1.00

G 0.99 0.93 0.97 0.98 0.99 0.92 1.00

H 1.00 0.94 0.98 0.99 1.00 0.93 0.99 1.00

J 0.96 0.91 0.95 0.95 0.96 0.93 0.95 0.96 1.00

K 0.92 0.89 0.92 0.91 0.92 0.90 0.91 0.92 0.95 1.00

L 0.96 0.93 0.95 0.98 0.96 0.92 0.96 0.96 0.97 0.94 1.00

M 0.99 0.93 0.98 0.98 0.99 0.93 0.99 0.99 0.95 0.92 0.95 1.00

N 0.89 0.88 0.89 0.90 0.88 0.89 0.88 0.89 0.94 0.92 0.95 0.88 1.00

Note: For this table, I recompute the ranking of cities by their estimated nightly short-term rental rate of
a representative apartment at the city center (Table A1). The table reports correlation coefficients of the
estimated rank positions among all rankings. Specification A refers to the baseline version as shown in Table
A1. B is based only on entire apartments, excluding properties that are shared. C controls for ratings. D
controls for all possible amenities. E does not control for proximity to the shore of an ocean or big lake. F
includes all properties that have been rented at least once. G includes all properties that have been rented or
available at least 125 of 365 days. H uses prices not windsorized to the 0.01 and 0.99 percentiles by country.
Specification I uses the centers from OSM for all cities. J uses the centers from Google Maps for all cities.
K uses ln(distance) instead of ln(distance + 1) to compute the distance gradients. L divides the properties
in each city in halfs, according to their distance to the city center, and then demeans by city halfs. Finally,
M uses average retal prices instead of rental prices at the city center by not including distance gradients.
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Figure A3: Comparison
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Note: This figure shows correlations between city intercepts estimated from short-term and long-term rental
data. Panel A shows the analysis for France, using commune-level rents from la carte des loyers, who estimate
them as outputs of hedonic regressions. I match 451 communes (and arrondissements) to my 12 (functional)
French cities. I then regress prices on city distance gradients and city intercepts. The x-axis of Panel A shows
these estimated intercepts. Panel B shows the analysis for the United States, using block group level rents
from the 2015-2019 American community survey, which are averages of survey responses. I match 43,636
block groups to my (functional) US cities. I then regress prices on city distance gradients and city intercepts.
In this case, I control for the block groups’ fractions of several building-related characteristics. The x-axis of
Panel B shows these estimates. In both cases, the y-axis shows the city intercepts that are the outcome of
my first-stage regression using properties from Airbnb that lead to the ranking in Table A1.
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Figure A4: Compactness

Homyel, Belarus: 0.94 Kuala Lumpur, Malaysia: 0.80

Detroit, United States: 0.66 Praia Grande, Brazil: 0.16

Note: The figure shows the compactness measure that I use as a second-stage control variable for four
exemplary cities. The chosen cities have compactness measures that correspond to the maximal value, 75%
quantile, 25% quantile, and minimal value of the distribution. The measure is taken from Angel et al. (2020)
where it is called “exchange”. To create it, I compute a circle with the same area as the city itself around
each city’s centroid and then measure the proportion of the circle that intersects with the shape of the city.
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Table A4: Additional specifications

Dependent Variable: log(Price of representative apartment at city center)

Model: (1) (2) (3) (4) (5) (6)

log(Population) -0.435∗∗∗ -0.330∗∗∗ 0.164∗∗∗ 0.161∗∗∗

(0.062) (0.083) (0.057) (0.050)

log(Area) 0.639∗∗∗ 0.516∗∗∗ -0.030 -0.050

(0.068) (0.104) (0.063) (0.053)

Compactness -0.198 0.078 -0.054

(0.313) (0.195) (0.112)

Elevation (100m) -0.014∗∗∗ -0.004 -0.007∗

(0.003) (0.004) (0.004)

Difference to 21.11°C 0.010 0.004 0.002

(0.014) (0.012) (0.007)

By ocean / big lake 0.111∗∗ 0.100∗∗∗ 0.054

(0.051) (0.035) (0.045)

Capital 0.123 0.114∗∗ 0.105∗

(0.100) (0.055) (0.057)

Airbnbs per 1,000 0.058∗∗∗ 0.048∗∗∗ 0.029∗∗∗

(0.010) (0.009) (0.006)

Country fixed effects - - - Yes Yes Yes

R2 0.325 0.281 0.475 0.736 0.776 0.813

Note: The table shows regressions of the estimated price of a representative short-term rental property at
the city center on city size and control variables. The units of observation are 733 cities. Column 4 includes
only country fixed effects. The parentheses show standard errors, which are clustered by country. The levels
of significance are * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A5: Heterogeneity by country without the countries’ two largest cities

Dependent Variable: log(Price of representative apartment at city center)

Model: (1) (2) (3) (4) (5) (6) (7)

USA Eurozone Russia China India Brazil Mexico

log(Population) 0.23∗∗ 0.30∗∗∗ 0.02 0.10 0.42∗ 0.04 -0.45∗∗

(0.11) (0.09) (0.26) (0.12) (0.22) (0.09) (0.19)

log(Area) -0.07 -0.10 0.14 0.01 -0.23 0.04 0.59∗∗∗

(0.12) (0.09) (0.26) (0.13) (0.23) (0.11) (0.19)

Compactness -0.36∗∗ 0.35 -0.34 -0.34 -0.17 0.34 -0.65

(0.18) (0.36) (0.43) (0.32) (1.30) (0.24) (0.54)

Elevation (100m) -0.02∗∗∗ -0.01 -0.04∗ 0.00 0.00 0.00 0.00

(0.01) (0.03) (0.02) (0.01) (0.03) (0.01) (0.01)

Difference to 21.11°C 0.02∗∗ 0.08∗∗∗ 0.00 -0.01∗∗ -0.05 0.00 -0.03

(0.01) (0.01) (0.01) (0.01) (0.05) (0.01) (0.02)

By ocean / big lake -0.11∗∗ -0.03 0.04 0.22∗∗∗ 0.15 0.01 0.07

(0.05) (0.07) (0.07) (0.08) (0.29) (0.07) (0.14)

Airbnbs per 1,000 0.04∗∗∗ 0.02∗∗∗ 0.06∗∗ 0.03∗∗ 0.78∗∗ 0.10∗∗∗ 0.10∗∗∗

(0.01) (0.00) (0.03) (0.01) (0.36) (0.03) (0.02)

Country fixed effects - Yes - - - - -

Observations 68 74 42 110 29 42 36

Note: The table shows regressions of the estimated price of a representative short-term rental property at
the city center on city size and control variables. The units of observation are cities. The two cities with the
largest population in each entity are excluded. The parentheses show standard errors clustered by country
for specification 2 (eurozone) and heteroscedasticiy robust standard errors for all other specifications. The
levels of significance are * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A6: Comparison with Chauvin et al. (2017)

USA Brazil China India

ln(rent) ln(price) ln(rent) ln(rent) ln(price) ln(rent)

Chauvin et al. (2017) OLS 0.15∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.23∗∗∗ 0.10 0.003

(0.01) (0.04) (0.02) (0.08) (0.12) (0.005)

IV 0.15∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.37∗∗∗ 0.06 −0.004

(0.01) (0.04) (0.02) (0.13) (0.13) (0.009)

log(nightly rate of representative apartment at city center)

Preferred OLS 0.17∗∗∗ 0.09∗∗∗ 0.13∗∗∗ 0.23∗∗∗

(0.03) (0.02) (0.03) (0.08)

IV 0.18∗∗∗ 0.08∗∗∗ 0.13∗∗∗ 0.23∗∗

(0.03) (0.02) (0.03) (0.09)

No controls OLS 0.19∗∗∗ 0.11∗∗∗ 0.14∗∗∗ 0.16∗

(0.04) (0.03) (0.03) (0.08)

IV 0.20∗∗∗ 0.10∗∗∗ 0.11∗∗∗ 0.16∗

(0.04) (0.03) (0.04) (0.08)

log(nightly rate of representative apartment anywhere in the city)

No controls, means OLS 0.12∗∗∗ 0.09∗∗∗ 0.06∗∗ 0.03

(0.03) (0.03) (0.02) (0.04)

IV 0.12∗∗∗ 0.10∗∗∗ 0.02 0.02

(0.03) (0.03) (0.03) (0.04)

Note: The first strip shows the estimates Chauvin et al. (2017) obtain when regressing either log rents or log
house prices on log population. They measure population in 2010 and use population in 1980 as an instrument.
The other three stripes are based on my own estimates. The dependent variable of the second and the third strip
is the estimated price of a representative short-term rental property at the city center. The dependent variable
of the fourth strip is the estimated price of a representative short-term rental property anywhere in the city. The
difference between the two is whether the first-stage hedonic regression does (strip 2 and 3) or does not (strip 4)
include distance gradients. The second strip is estimated using all control variables that are included in Table 3,
but does not control for area. The third and the fourth strip are estimated using neither controls nor controlling
for area. Population in 2015 is instrumented by population in 1975 for the IV specifications of stripes 2, 3, and 4.
The parentheses show heteroscedasticity robust standard errors. The levels of significance are * p < 0.10 ** p <
0.05 *** p < 0.01.
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